PHYSICAL REVIEW B 79, 035315 (2009)

Measurement-based approach to entanglement generation in coupled quantum dots

Avinash Kolli* and Brendon W. Lovett
Department of Materials, Oxford University, Oxford OX1 3PH, United Kingdom

Simon C. Benjamin
Department of Materials, Oxford University, Oxford OX1 3PH, United Kingdom
and Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543

Thomas M. Stace
Department of Physics, University of Queensland, Brisbane, QLD, Australia
(Received 16 January 2008; revised manuscript received 28 May 2008; published 15 January 2009)

The remarkable phenomenon of measurement-induced quantum entanglement has recently been demon-
strated between noninteracting atomic systems [D. L. Moehring et al., Nature (London) 449, 68 (2007)]. In the
solid state, the technique may offer a new means of harnessing the strong interactions between neighboring
units without the need for precise control over interactions. Recently, we proposed a method for optical parity
measurements in a coupled quantum dot system [A. Kolli ef al., Phys. Rev. Lett. 97, 250504 (2006)]. Here we
perform a comprehensive analytic and numerical study to determine the feasibility of realizing this method
using existing technology. We calculate the effects of possible error sources including nonideal photon detec-
tors, ineffective spin-selective excitation, and dot distinguishability (both spatial and spectral). Furthermore, we
present an experimental approach for verifying the success of the parity measurement. We conclude that

experimental realization of the process should be feasible immediately.
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I. INTRODUCTION

Quantum dots (QDs) are semiconductor heterostructures
which exhibit strong electron and hole confinement. This
leads to a highly discrete level structure, giving rise to many
interesting nanotechnological applications, such as quantum
information processing (QIP). Such a discrete level structure
enables us to identify well-defined effective two-level sys-
tems (qubits), which we use to encode our quantum informa-
tion. A natural qubit is the spin of an excess electron within
a quantum dot, which typically exhibits long lifetime (up to
milliseconds!?) and coherence times (up to microseconds?).
Our interest here is in closely separated Foerster coupled
quantum dots (CQDs) which exhibit strong optical activity.
This scenario may be realized by a pair of vertically stacked
self-assembled quantum dots.

As a necessary step toward the eventual goal of practical
quantum computation (QC), one must be able to establish
entanglement between distinct quantum systems. A natural
idea is to exploit the inherent interactions in solid-state sys-
tems, for example by permitting periods of free evolution of
the coupled systems followed by periods of controlled
single-qubit rotations. Early proposals* included using the

exchange interaction H =JS 1 '3‘2 to provide the necessary two
qubit interaction. However, precise manipulation of the inter-
actions between the spins is needed for such a scheme to
work, which appear difficult to achieve in practice.

An alternative method, which we discuss here, is to incor-
porate measurement as an essential part of the entanglement
generation process. The entangling power of measurement
was first explored for weakly excited atomic systems, and in
the context of linear optical approaches to quantum
computation.® A number of proposals have since been pre-
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sented for generating entanglement using optics in solid-state
systems. For example, Refs. 7 and 8 propose using single-
photon interference to robustly entangle spatially separated
matter qubits. A similar idea has also been proposed for en-
tanglement generation, heralded by macroscopic jumps
in a fluorescence signal, in atom-cavity-like systems.’
Measurement-induced entanglement of a pair of atoms has
now been experimentally demonstrated.'®

If we could implement a measurement-based scheme for
electron spins then we could do away with the exquisite
control over interactions required by the earlier solid-state
approaches mentioned above. However, there exists a no-go
theorem, which states that it is not possible to achieve an
exponential speed-up over classical computation using
solely single-electron Hamiltonians and single-spin
measurements.'! Recently, Beenakker et al.'?> showed that it
is possible to lift this restriction if we look outside the Hil-
bert space of a spin and exploit the charge degree of free-
dom. Charge and spin commute, and so we are able to make
measurements on the charge without destroying any informa-
tion that is contained in the spin degrees of freedom. Beenak-
ker et al.'? proceed to show that partial-Bell-state measure-
ments (also known as parity measurements) on the spin
states are sufficient to implement a CNOT gate. A number of
subsequent papers have proposed specific implementations
for these spin-parity measurements. These include a charge
tunneling detection method'> and a charge fluctuation
method. '

Recently,!> we proposed a method for optical parity mea-
surements on a pair of coupled quantum dots, exploiting the
principle of zero which-path information. In this paper we
generalize this scheme and perform a comprehensive study
of environmental factors. We will begin, in Sec. II by outlin-
ing the system and the interactions present. In Sec. III we
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will detail the various steps in the spin-parity measurement.
We will present results for the operation of the measurement
in Sec. IV, and then in Sec. V we will analyze the effect of
various error mechanisms, including valence band mixing,
and spatial and spectral distinguishability of the two dots. We
then proceed to describe a method for verifying the success
of our measurement in Sec. VI. Finally, we will give some
concluding remarks.

II. COUPLED QUANTUM DOT SYSTEM

In order to develop our coupled model, we will first in-
troduce the structure of a single quantum dot interacting with
a laser field. We assume that the dot is n doped such that the
valence levels (VL) are completely filled and the only occu-
pied conduction level (CL) is the lowest-lying level. In what
follows, we will only consider the top most filled valence
states |J,= % 3/2). The CL electron has a spin degree of free-
dom on which we encode our quantum information: |0) is
encoded in the m,=—1/2 state and |1) in m,=1/2. The sys-
tem is irradiated by a classical o circularly polarized laser
field, resonant with the VL-CL energy gap. An electron-hole
pair (exciton) state can be created if a photon’s angular mo-
mentum of +# can be absorbed; Pauli’s exclusion principle
means this is only possible when the qubit is in state |m,
=1/2)=|1). This effect is “Pauli Blocking,” and it enables us
to generate excitons conditioned on the state of the qubit
electron. The combined qubit electron/exciton state is a trion,
denoted by |X).

When two such doped dots are placed close to each other,
there are direct electron spin-spin couplings. However, these
are very weak: current experiments place their strengths at
less than 1 ueV.'® We take these interactions to be negli-
gible in comparison to the excitonic interaction that we will
exploit. The two primary excitonic couplings that we con-
sider are a static and a dynamic dipole-dipole coupling. The
static interaction results in an energy shift Vyy of the double
trion state and is due to the interdot exciton-exciton dipole
interaction. The dynamic coupling, or resonant Foerster in-
teraction V, results in an exciton transfer from one dot to the
other that is mediated by a virtual photon. This process has
been shown, to first-order, to be nonmagnetic and, thus, con-
serves electron spin.!” Therefore, in this system the Foerster
interaction only couples the [X1) and |1X) states. The Hamil-
tonian for the coupled QDs is

H = wo|X)X| ® T+ 0yl @ |X)X] + Vi XX)(XX]|
+ V(| 1XXX1| + Hoc.)
+Q cos wp(INX| @ T+1® [IXX]+H.e), (1)

where H.c. denotes Hermitian conjugate, wy is the exciton
creation energy for both dots (the dots are assumed to be
identical), ) is the time-independent laser coupling (as-
sumed to be the same for both dots), and w; is the laser
frequency. The energy difference between the [0) and |1)
states is negligible on the exciton energy scale.

The Hamiltonian [Eq. (1)] may be decoupled into four
subspaces with no interactions between them: Hy,={|00)},
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FIG. 1. (Color online) Energy level diagram for the coupled
quantum dot structure. Resonant transitions are denoted by the solid
lines, while nonresonant transitions by dotted lines.

H01:{|01>a 0X)}, H10={|10>, X0)}, and Hy,
={|11),|X1),|X1),|XX)}. Let us look more closely at the
Hamiltonian for the last of these subspaces. We rewrite this
in basis of the eigenstates when =0, which are |11), |¢,)
=5(|1X)+|X1)), [¢)=5(|1X)~[X1)), and |XX). The degen-
eracy of the |i_) and |¢,) levels is lifted by the Foerster
interaction, resulting in two states each containing a delocal-
ized exciton. In this basis the Hamiltonian is, after reintro-
ducing a finite (2,

Hyy = (0o + VR )] + (0o = VP[P ] + 2wy + Viy)
X|XXNXX] + Q' cos wt([11)h,| + | XXX| + H.c.).
(2)
The only dipole allowed transitions in this subspace are be-
tween |11) and |¢,), and between |¢,) and |XX), with a cou-

pling strength of Q'=\2Q. The level structure for all four
subspaces is shown in Fig. 1.

III. SPIN-PARITY MEASUREMENT

The parity measurement protocol consists of two steps:
excitation followed by monitored relaxation. In the excita-
tion we aim to transfer the population of the states from the
computational basis into the excitonic levels in the odd-
parity {|01),|10)} subspace, while retaining the population of
the even-parity {|00),|11)} states in the ground levels. We
can achieve this by exciting the coupled dots with a pulsed
laser tuned to energy w,. By referring to Fig. 1 and Egs. (1)
and (2), we can see that such a laser excites transitions within
the |01) and |10) subspaces. The |11) state is not excited to
first order if

Vi

Vi > Q]2 3)

>

since the laser is off resonance with the excited levels in this
space, and |00) is of course optically inactive.
Suppose we have an initial state

|10} = o 00) + a|01) + a[10) + vy [11). (4)

After an excitation 7 pulse, our state is |)=ay00)
+ a1 |0X) + a9 X0)+ ay1|11). We next enter a period of moni-
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toring the system for decay photons. Assuming perfect de-
tection, the state of the system is projected into the odd-
parity subspace if a photon is detected, and into the even-
parity subspace if a photon is not detected. Importantly, we
only distinguish between the two parity subspaces without
distinguishing states within the same subspace. We can rep-
resent the action of the measurement in terms of projection
operators for the two desired outcomes,

Po = |oaaX{Woaal = [01)€01] +[10)(10

s

PE = |l;beven><¢even| = |OO><OO| + |1 1><1 1 | * (5)

As mentioned earlier, we must not be able to distinguish
between states within the same subspace. Therefore, it is
important throughout the radiative relaxation that there is no
information gained about the source of the photon that is
emitted. There are many ways in which this condition can be
compromised—for example, spatial and spectral distinguish-
ability of photon emissions from the different dots. Our sys-
tem will also have imperfect detectors; in Sec. IV we will
begin to look at these potential sources of error.

IV. CONDITIONAL DYNAMICS WITH IMPERFECT
DETECTORS

To model the monitored radiative relaxation we use the
quantum trajectories formalism.!3~2° The conditional master
equation (CME) describing n-monitored relaxation channels
is

n
dp. =~ i[H,pJdt + 2 {n,Tr(TlcIp)pe + (1 = 7)Tc;]p.
J
j[cj]pc
A[C]]pc}dt + Tr(ﬂcj]pc) Pc dN]’ (6)
where p, is the density matrix of the system, H is the system
Hamiltonian in the interaction picture, c; is the Lindblad op-
erator through which the system couples to the measurement
channel j, J[c;] is the jump superoperator, which projects
out the component of the state that is consistent with a de-
tection from channel j and is (}eﬁned as ﬂcj]pc=q;'pccj.
Alc;] is defined to be .A[cj]pc=z(c;cjpﬁpcc;cj); 7; is the
efficiency of the detector that monitors emission into channel
j. dN J-(t) is the classical stochastic increment taking the val-
ues {0,1}, which denotes the number of photons detected in
channel j in the interval ¢, t+dt.
Between quantum jumps, when dN(1)=0, Eq. (6) is
equivalent to the linear, unnormalized CME,

p=—ilH.pl+ 2 {1 - ) Jc)lp- Alc)lpt, (1)

where p.=p/Tr(p).

Assuming that condition (3) is satisfied, there are no ex-
citons in the even subspace. Thus we need only consider one
channel defined by the Lindblad operator ¢=Ty(|01)(0X]
+[10%(X0|). Furthermore, the odd space only contains a
single excitation, and thus, we can model the dynamics in
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TABLE I. Table of relevant parameters for the coupled quantum
dot system.

Parameters Value
Vi 0.85 meV
Vxx 5 meV
IoN 2eV
Q 0.1 meV
Tx 1 ns
I'y 4 ueV

two steps: a period of continuous evolution followed by a
potential single quantum jump due to the photon detection
event.

Suitable parameters for an immediate future experiment
are displayed in Table 1.2'-2* The laser driving strength, (), is
chosen such that population within the excited states in the
11 subspace is only 1%.

For an initial state [Eq. (4)], and using Eq. (7), we find
that the probability pp that we are in the even-parity sub-
space at a time ¢ after excitation is

2 2
Qoo + )

pe(t) = (8)

1+ 7](0451 + a%o)(e_FX’— N’

In order to increase this probability, it makes sense to wait
long enough that we can be sure that if a photon has not yet
been emitted, it is not likely to be emitted in future. This
amounts to waiting for a time > 1/I'y. Then the fidelity of
projection into the even subspace is

2 2
@y + a1y

)

FE: .
(1- 77)(“(2)1 + aio) + (a%0+ a%l)

When a photon is detected (and ignoring typically negligible
detector dark counts) the fidelity of projection into the odd
subspace is Fp=1.

The success of our two-step parity measurement is
strongly dependent on detector efficiency, and can become
quite poor for typical values of 7. However, by repeating the
spin-parity measurement one or more times, it is possible to
obtain improved fidelities. On each round of the repeated
measurement, we gain greater confidence that we have suc-
cessfully projected into the even subspace, rather than miss-
ing every emitted photon. To analyze this we write the effect
of the spin-parity measurement when no photon is measured
in the quantum operation formalism.?> The action of a gen-
eral quantum operation can be written as

p— E(p) = >, ExpE}, (10)
k

where the E ¢ are the Krauss projection operators, which must

satisfy the normalization condition EkEZE,; 1. For our par-
ticular example, a single operation of the spin-parity mea-
surement will yield
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oFopE) + csEypE}
p Elp)= — IO (1)
TrlcoEopEp + ceEppEL]

where the unnormalized Krauss operators, defined as EO’E
=Pog= , are the projectors onto the odd and
even-parity subspaces, respectively, and the coefficients are
chosen in a self-consistent manner: c¢xz=1 and cy,=(1-7).
The denominator in this expression ensures that we satisfy
the normalization condition.

When the measurement is repeated r times, the overall
quantum operation is given by

cofopEp + cpEwpE}
Tr[c;)gopgz7 + crEE Epg};]

p— ELE(p)]= (12)

The fidelity of correctly projecting into the even subspace is
therefore given by
TrlcpEppEr]
Tr{chEopE} + cyEgpEL]

Fy=

)

_ (ago + 1))

= 2 . 2 2 2
(1= m)"(ag; + ajg) + (ago + a7y)

For all nonzero detector efficiencies, in the limit »— o the
term (1— )" will tend to zero. We can, therefore, expect a
unit fidelity for every input state in this limit.

Let us now look at the average fidelity for all input states
as a function of r. Owing to the normalization condition
ago+ag, +ajy+aj, =1, we write the four coefficients in
terms of four-dimensional hyperspherical polar coordinates,

(13)

o = sin ¢ sin ¢, cos ¢3,
Q) =COS ¢y,

o =sin ¢; cos ¢,

a,; =sin ¢, sin ¢, sin @5, (14)
and the area element is given by
dA =sin’ ¢, sin ¢rdpddrd . (15)

The resulting integral is
T T 2
Fp= f dey sin® ¢ f dé, sin ¢, f desFp.  (16)
0 0 0

This integration is performed numerically and the result-
ing averaged fidelity as a function of 7 can be seen in Fig. 2.
We clearly see a convergence, as r— %, of the average fidel-
ity to unity for all nonzero detection efficiencies. Thus, by
simply repeating the measurement, we are able to overcome
the inherent problems of lossy detectors.

V. CORRECTIONS TO MODEL

A. Valence-band mixing

The Pauli blocking mechanism, crucial to the success of
the excitation step, is valid only in the case of no light-heavy
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FIG. 2. (Color online) The averaged fidelities Fy as a function
of detector efficiency.

hole mixing, which is only true in very limited cases.?® Usu-
ally the hole eigenstates are composed of mixtures of light
hole (|J,= = 1/2)) and heavy hole (|J,= =+ 3/2)) states.”’ The
mixing is characterized by a factor e. This results in two
families of eigenstates: one with predominantly light hole
character and one with predominantly heavy hole character.
The latter tend to be the topmost valence levels and are'”

)y =\1- .= +3/2)+ /.= - 1/2),

)y =\1-éJ,=

(17)

On applying the o polarized laser field, it is now possible to
generate excitons from both the |0)=|m.=-1/2) and |1)
=|m,=+1/2) electron states. The resulting exciton-laser field
coupling Hamiltonian is

H .+ = cos[ o t](|1){X_| + €0)X,| + H.c.), (18)

where the trion levels are |X, )=|S;)®|h, ). The modified
mixing angle is €=e=— 311 and Iy, , are characteristic lengths
associated with the overlap of the electron and the lh, hh
Bloch functions (see Ref. 17).
The mixing also induces a Foerster interaction that couple
other single exciton levels,
Hp =My u([0X XX,0[ +

2M
+ Zh hh€

[1X_)(X_1])

S 10X WX, 1] + | 1X, XX _0]) + Hec., (19)

\r

where M, ; are the matrix elements for the transitions induced
by the Foerster interaction and i and j denote the different
initial and final hole states, respectively.

The Hamiltonian for the coupled quantum dots is now

H = (X )X+ [XIH(X]) @ T+ gl @ (XXX, ]+ [XXX)

+Hp+Hy + E Vx| )] (20)

mvelX_X,}

With the inclusion of hole mixing each decoupled sub-
space will now have two single excitonic levels and a biex-
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FIG. 3. (Color online) The effect of hole mixing on the level
structure of the coupled quantum dot system. The two Foerster in-
teraction terms are Vp=M,,, ;;, and ‘~/F=ZEM mah- Once again, far-
off resonant transitions are denoted by dashed lines and near reso-
nant transitions by solid lines.

citon level, and this is illustrated in Fig. 3. We now discuss
whether we can still perform the parity projection in this
more complex situation.

First, we must ensure that transitions to excitonic levels in
the even subspace remain suppressed. Condition (3) is still
valid for suppressing transitions from |11). Meanwhile, the
couplings to the excitonic levels from the |00) state are re-
duced by the mixing factor €, and so condition (3) is also
sufficient to suppress these transitions.

Second, transitions within the odd subspace must only
occur between the zero- and single-exciton levels. Our mea-
surement replies on the detection of a single photon: on de-
tection of the photon any population in the biexciton level
will be projected into the single excitonic levels, and this
must be avoided.

The dynamics is identical for the [01) and |10) subspaces
so we will concentrate only on the levels within the |[01)

subspace. In the basis {|01),[0X_),|X,1),|X,X_)} the Hamil-
tonian is
a
1.0 (a)
e=0 .
€=0.01
€=0.02
50-75 B e=0.05
S =0 .1
<
5
S o5
]
>
a
o
e 0.25
0.0 L—
0 5 10 15 20 25 30

t(mev'1)
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0 Q2 &2 0
Q2 5§, @n

H= N . @
Q2 v, & 2

0 202 Q2 25+Vy

where 0=wy— w; and \7F:2EM - We follow the evolution
of the four levels within this subspace over the course of the
excitation pulse. We are interested in the populations of the
|01) and |X,X_) at the end of the excitation pulse, and so in
Fig. 4 we plot the evolution of these populations over time
for a range of realistic mixing factors.

We see that, as a result of the strong biexciton shift Vyy,
the population build-up of the |X_X,) is suppressed for a
range of realistic mixing factors. For mixing factors up to
€=0.05 the computational states [01) and |10) are also effec-
tively depopulated—and so we conclude that hole mixing is
not a serious problem for the parity projection.

B. QD spatial separation

The two quantum dots that form our CQD structure are
naturally spatially separated. Typically the separation would
be more than an order of magnitude smaller than the relevant
optical wavelength. However as has been mentioned in Sec.
III, any source of distinguishability will affect the coherence
between the odd-parity states upon detection of a photon. To
analyze this effect we derive a new CME describing the de-
tection step, which includes the effects of spatial separation.

This is done in three stages: first we derive a Markovian
master equation from a microscopic Hamiltonian describing
the full dynamics of the system and bath. We then define a
jump superoperator, which describes the evolution of the sys-
tem upon a detection event. Finally we are able to identify a
CME by imposing the condition that the time-averaged CME
is equal to the master equation derived in the first step.

The Markovian master equation is derived from the fol-
lowing integrodifferential equation:

(b)
0.0001

— =0.

— e=0.01

— €=0.02
% 0.000075 | —— ¢=0 .05
< — =01
x
QU
g 0.00005 [~
=
o
>
Q.
o
o 0.000025 [~

0.0
0 5 10 15 20 25 30
-1
t(meV )

FIG. 4. (Color online) Populations of (a) |01) and (b) |X_X,) levels through the duration of the excitation pulse. The parameters are
chosen as follows: My, =M, =V and 1, =1;,. The laser is tuned to the exciton creation energy w, so that 6=0.

035315-5



KOLLI et al.

pt) =— f drTro{{H/(0),[H/(t = 7),p(1) ® ppu]}}, (22)
0

where H(t) is the microscopic Hamiltonian in the interaction
picture, p(t) is the density matrix for the system, and py, is
the density matrix for the photon bath. If our interaction
Hamiltonian is of the general form,

Hy= 2 A{(1) ® Bi(0), (23)

then we may write the master equation in the Born-Markov
approximation as

plr) = - J A1, Co f(DIALDA L1 = 7p(1)
a.p

0

—Ag(t=Dp(MAL(D] +H.c., (24)

where C,, ﬁ(T)ZTrph[BZ(T)B 5(0)ppn] is the environment cor-
relation function.

For our case of two quantum dots coupled to a photon
bath, the microscopic Hamiltonian is

H=HCQD+th+Him (25)
with

_ il T
Heqgp = wy(cxoCxo + CoxCox)

.
Hy, = > oagay,
k

Hy= >, fK)ae™ (chy+ e®ely) +He,  (26)
k

Cxp0x Tepresents the annihilation operator for an exciton
on dot A, B, respectively, and g is the annihilation operator
for a quantum of the electric field. k is the wave vector for
the electric field, f(K)=(i.dy) € where g is the dipole mo-
ment vector for each qubit, &y is the polarization vector for
the electric field, and ¢ is the energy of a mode k of the
electric field. Finally, Ar is the center-to-center separation of
the two quantum dots.

We first transform to the interaction picture defined by
Hy=Hcqp+H pp,

H;= 2, f(k)e* e @edig, (¢l + e®2cl ) + He. (27)
K

We now proceed to calculate the master equation using Eqs.
(23) and (24). We must first identify the system and bath
operators, A;(t) and B(t), respectively. We choose

AlT((t) =f(k)eik'r(c;0 + eik.Arc(T)X)eint= Pf(g"“’o’,

Blt(t) = ape K (28)

The master equation then becomes

PHYSICAL REVIEW B 79, 035315 (2009)

5=~ 273 J[1 + Ko PP~ 2Pip(0 P
k

o0 PLP et~ 1) + SN [P Lol

= 2PLp(1) Py + p(t) Py P] 8wy — @y, (29)

where N(wy)=(1—e¢*s7)! is the occupation number of

mode k. As kzT< w, we may assume that N(wy)=0, and so
the master equation back in the Schrédinger picture is

1
p=—ilH.pl+ 2 (Pka.t - PP + pPﬂPk}) Swy— ).
k

(30)

Our detection model is simply a single-photon detection so
we now can define our jump superoperator as

Jpl= 2 PupPL 8wy — o), (31)
k!

where the k” vector runs over the solid angle covered by the
detector. It is assumed for simplicity that the detector covers
the full solid angle, and also assuming an overall detector
inefficiency 7, the stochastic master equation becomes

. 1
p=—ilH,p]+ > {(1 — )PP}~ E{PiPk,ﬁ}}é(wo— wy).
k

(32)
Performing the sum over all modes, we obtain
p=—ilH,p]+(1-7)Jp~- Ap. (33)
where

Jp= Fl[CXOPC;r(O + 3f(koAr)(CX0PC5X + COXPC;(O) + COXPCSX]’
(34)

Ap =T \[ckocxop + pciocox + cixcoxp + peixcox],  (35)
and

2a cos(a) + (a? - 2)sin(a)

fla)= 3 (36)

a

The function 3f(kyAr) characterizes the decohering effect
of distinguishable photons. It takes a value of unity for per-
fectly indistinguishable dots, and then Eq. (33) reduces to
Eq. (7). Stacked self-assembled QDs have separations of the
order 5 nm,?® while the typical exciton creation energy is
wy=2 eV. This gives a value of 3f(koAr)=0.99925, and we
can conclude that spatial separation has a negligible effect on
the successful operation of the parity measurement.

C. Detuning of QD excitonic energy levels

We have up to this point neglected any inhomogeneity in
the underlying structure of the two dots in our coupled sys-
tem. However, in practice we must expect a certain degree of
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inhomogeneity: for example, due to the growth technique
self-assembled vertically coupled quantum dots will tend to
have different sizes. This will result in differences in the
confining potentials for the two dots, which in turn will im-
pact on the exciton creation energies, and the overlap inte-
grals, which determine the coupling with the laser field. For
our parity measurement, the most important effect will come
from the detuning or nonresonance of the exciton creation
energies for the two dots. This will affect both our ability to
perform the excitation step and also the ability to retain co-
herence when we measure a photon. These effects will be
analyzed in this section.

1. Excitation pulse

To begin, let us concentrate on the excitation step. As with
the hole mixing, we have two primary concerns: first we
must maintain the population of the even subspace within the
computational ground states, and second we must ensure that
the populations within the odd subspace are completely
transferred to the excitonic levels.

Let us initially focus on the first issue. The Hamiltonian

for  the 11 subspace, written in the  basis
{11),]1X),]X1),|XX)}, is now
0 Q2 Qr 0
Q2 6 Vi 02
H= , (37)
02 Ve 68, Q2

0 O2 Q2 64+ g+ Vyyx

where 9 p=w4 p— .

As before, we begin by transforming the Hamiltonian into
a basis of (=0 eigenstates. The single exciton subspace is
transformed using the following:

<|1X)> (cos@ —sin 6)(|¢_))
IX1)) \sin@ cos @ /\|p))’
where 0=1/2 arctan[2V/ (84— 8p)] is the mixing angle for

the two states {|1X),|X1)}, and {|#/_), |, )} are the new eigen-
states. Reintroducing the laser coupling, we find that the

(38)

Hamiltonian in the new basis {|11),]¢.),|¢.),|XX)} is
0 Q2 Q2 0
Qnr 8 o an
H= : ., (39)
a2 0 5 .2

0 Q72 Q2 64+ s+ Vxx
where Q. =Q(cos §=*sin 6) and

8, = 8, cos® O+ 8 sin® O+ V- sin 20,

8p= 6, sin® 0+ 8 cos® -V sin 2. (40)

To suppress any transitions to the excitonic levels, we

require that
0./2 < 8),85 04+ S+ Vyy. (41)

For both limits of small detuning (8=38,—383<2Vjy) and
large detuning (&=, — 83>2Vp), this condition is satisfied.
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FIG. 5. (Color online) Plot of the population of the single exci-
tonic levels and the phase between them at the end of the excitation
step as a function of the detuning of the two QDs.

Let us now turn our attention to the dynamics within the
odd subspace during the excitation phase. For a successful
outcome, we must effect the same population transfer into
the exciton levels for both the |01) and |10) initial states. The
joint Hamiltonian for these two subspaces, in the rotating
frame, is

0 Q2 0 0

HQ/zaAoo @)
1o o o a2])

0 0 Q2 &

To achieve equal population transfer to the |0X) and |X0)
the laser is tuned to the midpoint between the two excitonic
levels: 8y=—6p=06=(wy—wp)/2. The maximum population
of the excitonic levels is given by Q%/(Q?+&°) and is found
at a time of 7,=/2Q%+ . For (1> § we can achieve the
required 7 pulse for each odd-parity state. However, we
must also ensure that the coherence between the |01) and
[10) states is preserved as we transfer the population to the
excited states. Since the levels are not resonant, a net phase
difference can be accumulated between them by the end of
this excitation pulse. The variation in this phase is shown,
along with the population of the excitonic states, in Fig. 5 as
a function of detuning. The figure seems to show that we
require very similar dots to ensure a successful excitation
pulse. However, if the phase accumulated is known, it is
possible to correct for at the end of the measurement using
single-qubit operations.

2. Detection

We next discuss the effect of detuning on the detection
process. To analyze this we will derive a master equation
from first principles describing the relaxation process. From
here we will proceed to identify the relevant jump operator
associated with the detection of a photon and the resulting
CME governing the dynamics of the system until the mea-
surement occurs.
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We start with a microscopic Hamiltonian describing the
coupled quantum dots, the photon bath, and also the coupling
between these two systems,

H:HCQD+th+Hint’ (43)

where

—w.oh t
Hcqp = waCxoCxo + ©pCoxCoxs

¥
Hy, = > oagay,
k

Hip = 2 grag(cox + cxo) + Hee., (44)
k

where gy is the photon-exciton coupling constant and is as-
sumed to remain identical for both dots (any discrepancy can
absorbed into the total decay rates I'4 and I'g). Note that in
contrast to Eq. (27), here we are neglecting spatial separation
but accounting for frequency discrepancy.

We begin by transforming into the interaction picture, de-
fined by Hy=Hcqp+Hy, The resulting interaction Hamil-
tonian is

H,= > gkalt(ei(“’k_“’*‘)’cxo + ei(‘”k_“"?)’cox) +H.c. (49
K

We proceed as before [Egs. (23) and (24)] by defining the
system and environment eigenoperators A;(r) and B,(t), re-
spectively,

A;Q(t) = g(k)(ei“’f"c;() + ei“’B’c(T)X ,

BL(1) = aye . (46)

Assuming that we are operating at zero temperature, we ob-
tain the following master equation:

p(t) = FACXOP(I)C)T(O + (g + FB)/Z(Cxop(f)chei(wB_wA)[

+ coxp(D)ckoe BN + T peoxp(t)cgy
1 .
- E{C)}OCXO + CSXCOX,P(t)}, (47)

where the decay rates of the two dots are given by I'y
=273 |gw]* N —wy p). If (wp—wy)> (T +Tp)/2 the fast
oscillating terms may be neglected as their contribution
would average to zero on the time scale of the relaxation. In
this case, all coherence is lost during the monitored relax-
ation. Therefore, for a nondestructive measurement, we must
work in a regime where (wz—w,) <(I"y+1'g)/2. This condi-
tion is equivalent to requiring that there is a large overlap of
the two spectral lines from the two quantum dots so that the
two dots are to a high degree spectrally indistinguishable.

We may make a further assumption to simplify the analy-
sis: the decay rates I'4  are proportional to a)f" 5> and so if the
detuning is small we may assume that the decay rates are
identical for the two dots, i.e., I'y=I"g=I". The resulting mas-
ter equation back in the Schrédinger picture is then
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p(t) == i[Heqp.p] + T'cox + cxo)p(ciy + cho)
r .
- E{C}L(OCXO + CoxCoxs P} (48)

To derive the conditional master equation, we identify the
jump operator associated with a photon detection event. As
we are assuming that our detector covers the full 47 solid
angle, our jump operator is simply J[p(t)]=T"(cox
+Cxo)p(chy+cio). Assuming some loss in the detection pro-
cess, again parametrized by the variable 7, the unnormalized
CME is

ﬁ:—i[HCQDsﬁ]"'(l - ﬂ)jﬁ—Aﬁ’ (49)

where Ap= g{c;ocxo+ CixCox- P}

We see that when a photon is detected at a time ?p, a
phase of ¢/(“a=“s)» is introduced between the |01) and |10)
states. This phase is the relative phase accumulated during
the time that the system spends in the excitonic levels. This
is a general problem exhibited by many optical-matter-
measurement-based schemes. Although, in theory we could
have information about the relative phase introduced be-
tween the two levels, in practice this information can be
beyond our reach, and effectively introduces a random phase.
Such a random phase will destroy any coherence between the
two states in the odd subspace, thereby destroying the non-
destructive parity measurement.

In order to retain coherence during the measurement, we
therefore require a photon detector with good enough time
resolution that we are able to successfully access this phase
information. If this is possible, then we may correct for the
phase accumulated using single-qubit rotations, for example
with a single Z rotation on the first QD.

In the worst-case scenario of distinguishable dots, we
have a probabilistic scheme for generating entanglement,
which is successful only when we project into the even sub-
space. However, this still provides a powerful resource,
which is comparable with many of the existing, inherently
probabilistic, schemes for measurement-induced entangle-
ment generation.”®

VI. EXPERIMENTS

We will conclude by presenting a discussion of experi-
mental procedures for testing the fidelity of the parity mea-
surement. Quantum process tomography provides a general
procedure for characterizing the dynamics of a quantum sys-
tem provided that we can measure each qubit independently
in the X, Y, and Z bases. However, in our system, we must
restrict ourselves to only measuring both qubits in the same
basis at the same time since the two dots are not each indi-
vidually addressable, and we may only perform global
single-qubit rotations.

We first introduce entanglement witnesses for the four
possible entangled Bell states. It has recently been shown
that entanglement witnesses can be constructed for highly
entangled states using the stabilizers that define these
states.”® An observable S, is a stabilizer for the state |¢) if

S =). (50)
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The stabilizers for the four Bell states are then

Bell States Stabilizers S,
g =500 +10)  -Z,2,,X,X,
[y =5(01) = [10) -Z,Zp,- X,X, .
6 =500y +[11) 2,2, XX,
[p-y=5(00)—[11)  Z,Z,,~ XX,

By making measurements on XX and ZZ we are able to
distinguish between the four Bell states. The ZZ measure-
ment is related to the parity projection operators by Pr
= Iiilzz. Meanwhile the XX measurement is achieved by first
performing a Hadamard gate on each qubit, and then per-
forming the same spin-parity measurement. This XX mea-
surement effectively measures the phase between the states
within each subspace. We, therefore, are using repeated ap-
plications of the parity measurement to gain information
about its own operation.

As we have seen from the previous analysis (Sec. V), the
primary error source in this system is decoherence between
the states in the odd subspace due to distinguishability of the
dots. We can, therefore, assume that there is some loss of
coherence after the parity measurement, as follows:

PopPly= PyipPy; + aPopPl+ aPopPy + PiopPiy,

PpPp=(Poy+ Py1)p(Ply+ P])). (51)

where P;=|i)(i|. @ denotes the degree of coherence; it takes a
value of unity for indistinguishable dots, and will be some-
what less than that for distinguishable dots.

Starting with an initial state that is an equal superposition
of the four computational states, the state of the system con-
ditioned on observing a photon is

PHYSICAL REVIEW B 79, 035315 (2009)

0000
110 a 0
PI=210 a 1 0 (2)
0000
Then after the global Hadamard rotation, the state is
1+« 0 0 -l-«a
1 0 l-a a-1 0
gl 0 st t-a o |0 ©Y

-l1-«a 0 0 1+«

Finally, the probability of projecting into the odd sub-
space after the second parity measurement is I_Ta We, there-
fore, see that any loss of coherence during the parity mea-
surements will manifest itself in the final probability, thus,
giving us a clear method to quantify the effect of distinguish-
ability on the nondestructive nature of the parity measure-
ment.

VII. CONCLUSIONS

In conclusion, we have examined a scheme for imple-
menting a spin-parity measurement on a pair of coupled
quantum dots. We have estimated the fidelity of the parity
measurement scheme presented here in the presence of real-
istic sources of errors. We find that the measurement is ro-
bust in the presence of inefficient detectors, ineffective spin-
selective excitation, and spatial separation of the dots. For
spectrally separated dots, it is found that the performance of
the measurement is dependent on the degree of overlap of
the spectral lines from the two dots; total spectral distin-
guishability results in a probabilistic measurement. Finally,
we have proposed an experimental method that is able to
verify the success of the parity measurement and quantify the
degree to which the measurement can be performed in a
nondestructive manner.

*avinash.kolli @materials.ox.ac.uk
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